If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=576
We move all terms to the left:
7x^2-(576)=0
a = 7; b = 0; c = -576;
Δ = b2-4ac
Δ = 02-4·7·(-576)
Δ = 16128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16128}=\sqrt{2304*7}=\sqrt{2304}*\sqrt{7}=48\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{7}}{2*7}=\frac{0-48\sqrt{7}}{14} =-\frac{48\sqrt{7}}{14} =-\frac{24\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{7}}{2*7}=\frac{0+48\sqrt{7}}{14} =\frac{48\sqrt{7}}{14} =\frac{24\sqrt{7}}{7} $
| p(9p-5)=84 | | 8(3x+4)=250 | | 2/3+195=x | | (6+f)(6+f)=144 | | 2/3=195=x | | 4(y+6)=12y | | 3n-2=5n+ | | 195=121-v | | 139=268-x | | 139-268=x | | 12-3x=4+(-2x)= | | 1/5x+2/3=195 | | 7=4x15 | | -v+260=100 | | 205=105-x | | 1/2x+7=21 | | 22x+21=-33x | | 1/2+7x=21 | | 3t^2-20t+72=0 | | 2(d-1)+2d=3 | | 4.8-1.8x=x^2 | | 6(1-4w=-18 | | 5r+3=1 | | x7=−1 | | m-5=4m-17 | | 3x-30=3+3x | | 16-6n=n+72 | | 4^3x=15 | | u+4/5=1/6 | | -4n+2(5n-6)=-3n+33 | | d^2-3d+6=0 | | f-4=6f+ |